
Abelian sandpile model on the Husimi lattice of square plaquettes

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1995 J. Phys. A: Math. Gen. 28 6099

(http://iopscience.iop.org/0305-4470/28/21/014)

Download details:

IP Address: 171.66.16.68

The article was downloaded on 02/06/2010 at 01:04

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/28/21
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A Math. Gen. 28 (1995) 60994107. Printed in the UK 

Abelian sandpile model on the Husimi lattice of square 
plaquettes 
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Bogoliubov Laboratory of Theoretical Physics, IINR, 141980 Dubna. Russia 

Received 5 June 1995 

Abstract. An Abelian sandpile model is considered an the Husimi lattice of square plaquenes. 
Exact expressions far the distribution of height probabilities in the self-organized critical state 
are derived. The two-point correlation function for the sites deep inside the Husimi lattice is 
calculated exactly. 

1. Iniroduction 

In recent years, there has been considerable interest in different dynamical models which 
can evolve without any tuning of parameters to the self-organized critical (SOC) state. 

The concept of self-organized criticality has been introduced by Bak et al [I], through 
simple cellular automaton models known as sandpiles, to explain the temporal and spatial 
scaling in dynamical dissipative systems. 

Later on, Dhar and Majumdar, in a number of papers [Z-l], studied the so-called Abelian 
sun$& models (ASMS) since they show a non-trivial analytically tractable example of the 
SOC behaviour. For these models some ensemble-average quantities have been calculated 
on the square lattice [2,4-71. 

In this paper, we consider ASM on the Husimi lattice of square plaquettes. One of the 
remarkable features of the Husimi- or Bethelike lattices is the exact solvability of different 
spin, gauge and dynamical models defined on them [8-141. One might also hope, by 
examining the form of exact solutions for these lattices which allow only a limited number 
of closed configurations, to predict a general behaviour for the lattice models of principal 
interest. 

It is well known that the exact solutions obtained for different spin models on the Bethe 
lattice are equivalent to the BethePeierls approximation and they give a more precise 
description of the critical behaviour of these models than the mean-field approximation 
technique [15]. In tum, the Husimi lattice can be considered as a next step in this list 
of approximations and, as has been shown by Monroe [lo] for the two- and three-site 
interacting spin systems, this approximation improves results obtained on the Bethe lattice. 
In section 6 we give a table where we compare the distribution of height probabilities in the 
SOC state of ASM calculated on different lattices and again we see that the results obtained 
on the Husimi lattice are in good agreement with the known exact results on the square 
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lattice [4,6]. This can be explained by the presence of elementary loops in the Husimi lattice 
that reproduce the local structure of the usual lattices more precisely than the Bethe lattice. 
Hence, for most of the flat and three-dimensional lattices we can find suitable Husimi-like 
lattices and examine different models on them. 

The outline of the paper is as follows. In the next section, we define the lattice and ASM 
on it. In section 3, we find recursion relations for the numbers of allowed configurations 
in the SOC state. In section 4, we compute exactly the distribution of height probabilities. 
In section 5, we calculate the two-point correlation function for the sites deep inside the 
lattice. In section 6, we give some concluding remarks. 

2. Lattice and model 

A pure Husimi tree of square plaquettes 1161 can be constructed recurrently. As a basic 
building block, we will take an elementary plaquette (figure I(u)). This basic block will 
be called the first-generation branch. To construct the second-generation branch, we will 
attach a single basic building block at each free site of the first-generation branch except 
the base site (root) (figure l(b)). Continuing this process we develop higher-generation 
branches. Then, at the final step, we will take four nth-generation branches and connect 
their base sites by the elementary plaquette. As a result, we will get the graph with the 
coordination number q = 4. 

V1 V Papoyan and R R Shcherbakov 

Figure 1. (a) A fint-generation branch consists of a single square plaquette. ( b )  A second- 
generation branch. 

Let us define ASM on this connected graph of N sites as follows. To each site i 
(1 < i < N) we associate an integer zj (1 4 zi < 4) which is the height of a column of 
sand grains. The evolution of the system is specified by two rules. 

(i) Addition of a sand gain at a randomly chosen site i increases zj by 1. 
(ii) The site i topples if the height z j  exceeds the critical value zc = 4 and sand grains 

drop on the nearest neighbours. 
The number of surface sites of the Husimi tree is comparable with the interior ones. 

Hence, the calculation of the thermodynamic limit of the bulk properties requires special 
care. In our work, we define the height distribution of sand gains and the two-point 
correlation function for the sites deep inside the tree. Using these interior sites one can 
construct an infinite lattice, as they have the same features. Therefore, we will consider the 
problem on the Husimi lattice rather than on the Husimi tree. 

Any configuration { z j }  on the Husimi tree in which 1 < zi < 4 is a stable configuration 
under the toppling rule. These configurations can be divided into two classes: allowed and 
forbidden configurations [2]. 



ASM on ihe Husimi larrice 6101 

Any In the soc state, only allowed configurations have a non-zero probability. 
subconfiguration of heights F on a finite connected set of sites is forbidden if 

z ; S q ;  V i e F  

where q; is a coordination number of a site i in the given subconfiguration F [2]. 
In turn, we can divide the allowed subconfigurations on an nth-generation branch of 

the Husimi tree into three non-overlapping classes: weakly allowed of type I (WI), weakly 
allowed oftype 2 (W2) and strongly allowed (S) subconfigurations. 

Consider an allowed subconfiguration C on the nth-generation branch G, with a root a 
(figure Z(a)). The coordination number of the root a is q = 2. Adding a vertex b to the G,, 
one defines a subgraph G' = G, Ub. If the subconfiguration C' = C U b with zb = 1 on G' 
is forbidden, then C is called the weakly allowed subconfiguration of type 1 (W1). Thus, 
W, can be locked by one bond, after which it becomes forbidden. 

I 
I 

(a) b L  

Figure 2. ( a )  An nth-generation branch G, and veztex b form a subgraph G'. (b) Now two 
vertices b and d and the C. form a subgraph C". 

Now add two vertices b and d to G, and consider a subconfiguration C" = C U b U d 
on G" = G ,  U b U d (figure 2(b)). If the subconfiguration C" = C U b U d with zb = 1 and 
zd = 1 on G" is forbidden, then C is called the weakly allowed subconfiguration of type 2 
(Wz). 

Any allowed subconfigurations defined on the nth-generation branches that cannot be 
locked by one bond or by two bonds form a strongly allowed (S) class. 

It is important to note that any subconfiguration of the WI type is also of the Wz type. To 
obtain the non-overlapping classes, we always check first that the subconfiguration belongs 
to the WI type and only then to the W2 type. 

3. Recursion relations 

In this section, we endeavour to find recursion relations for the numbers of allowed 
configurations on the nth-generation branch G, of the pure Husimi nee. Now .consider 
G, with a root vertex a (figure 3) that consists of three (n - 1)th-generation branches G r l I ,  
GrI ,  and Gfl1 with roots a,, a2 and a ~ ,  respectively. Let Nw,(G,,i), Nw,(G., i) and 
Ns(G,, i) be the numbers of distinct W,, W, and S-type subconfigurations on G, with a 
given height zn = i at the root a. 
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&?, 

Figure 3. The nth-generation branch G. with three nearest (n - I)&- 
a generation branches GY!l, GL!, and Gn-, .  0) 

Let us also introduce 

These numbers can be expressed in terms of the numbers of allowed subconfigurations 
on the three (n - 1)th-generation branches G:?l, Gi!l and G,,-l. 0) . 

Nw,(Gn) = N s N s N s f  Nw,NsNs+Nw,NsNsf  N s N w , N s f  Nw,Nw,Ns 
f N s N w 2 N s  f Nw,Nw2Ns f Nw,Nw,Ns f NsNsNw, f Nw,NsNw, 
+NwiNsNw, f NSNWZNW, f Nw,Nw2Nw, + NsNsNw, f Nw,NsNw, 
+Nw,NsNw, f NsNw,Nw, f Nw,Nw,Nw, f NsNw,Nw, 
fNw,NwJw2  f Nw,Nw$" (3.4) 

NwZ(G,) = N M  ( G d  (3.5) 
N s ( G J  ~ 2 N s N s N ~ f N w , N s N ~ f ~ N ~ , N s N s f 2 N s N w , N s - t  Nw 2 1  Nw N s  

f2N~Nw,Ns+Nw,Nw,Ns+2Nw,Nw,Ns+ NsNsNw, f Nw,NsNw, 
+NsNw, Nw, f ~ N s N s N w ,  f Nw, NsNw, f 2Nw, NsNw, 
+NsNw,Nw, f 2NsNw2Nw, (3.6) 

where the first factor in each term of the sum corresponds to the G:ll branch, the second 
one to 

The fact that the numbers of the WI-type subconfigurations and the Wz-type ones are 
equal to each other is seen from straightforward calculation. 

Let us introduce 

and the third one io G.nll. 

(3.7) 

If we consider graphs G:?l, G:?, and G,!?, to be isomorphic, then N(G:l,) = 

NW X = -  
N s  

where N w  Nw, = Nw,. 

N(G?!,) = N(G;?]) and from (3.4H3.7) one obtains the following recursion relation: 
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The iterative sequence (X(G,)} starts from the seed X(G0) = $ and converges to the 
that characterizes, in the thermodynamic limit, the ratio of the stable point X* = 

W,-type or the W2-type configurations to the strongly allowed ones. 

4. Distribution of height probabilities 

One of the main characteristics that describes the soc state is the probability P ( i )  of having 
the height z = i at a given site: 

where N(i) is the number of allowed configurations with a given value z = i (1 < i < 4) 
and NtOtd = N ( i )  is &e total number of allowed configurations on the Husimi lattice. 

Consider now a randomly chosen site 0 deep inside the Husimi tree (figure 4). The 
number N ( i )  can be expressed via the numbers of allowed configurations on the six nth- 
generation branches GF', a = 1 , .  . . ,6. 

Figure 4. A site 0 with height i is lmated deep inside the 
branches 

 if^ i = 1, then each allowed configuration on the branches Gi'), Gi3), GL4) and Gf' 
cannot be of W ,  type. It is also evident that three W2-type configurations cannot occur on 
the neighbouring branches CA'), GA2), GAT), or Gi4), GP), Gi6), and so on. 

Excluding all such forbidden subconfigurations one finds the following expression for 
the number N(1) of allowed configurations with i = 1 at O ~ f o r  isomophic branches Gr), 
01 = 1, .. ., 6 

6~ 
N(l) = [I + 8X + 22X2 + 24X3 + 9X4] n Ns(G'@'). 

Ir=l 

Arguing similarly, one can get 

6 
N(2) = [ I  + 12X + 50X2 + 84X3 +45X4] n Ns(G"') 

N ( 3 )  = [1+ 12X + 56X2 + 124X3 + 1 19X4 + 24X5] n Ns(G")) 
.=I 

6 

u=1 

6 
N(4) = [1+ 12X +56X2 + 128X3 + 147X4 + 72X5] n Ns(G'@). 

==I 

(4.2) 

(4.3) 

(4.4) 

(4.5) 
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For the sites far from the surface in the thermodynamic limit (n + 00) we have 
X = 9. Thus, from (4.1)-(4.5) we get 

5. Wo-point cordation function. 

The two-point correlation function may be defined as the probability Pa@, j )  of a stable 
configuration in which two sites separated by the distance II have heights i and j .  To 
obtain P,(i, j )  explicitly, we consider two sites A ,  and A.+1 deep inside the Husimi lattice 
(figure 5). The left-hand side~of the lattice beginning from the vertex Ax, k = 1,. . . , n, 
will be denoted as branch or subkee Gr with the root AI. This branch, in tum, consists of 
the subbranches Gk-1, Ujb), U z l .  

U,'" Ut) 

A.4 - - - - - - - - - U0 A1 

A2 

U$) up) 

Figure 5. The path from the site A,  to the site A,+, on the Husimi lattice goes through the 
points A2.. . , , A.. The left-hand side of the lattice beginning from the veriex AX. k = 1.. . . , n, 
is denoted as a branch Gr with the root AX. 

Following Dhar and Majumdar [3], we can solve the problem by the transfer matrix 

The number of allowed configurations N ( i ,  j )  on the Husimi lattice with fixed hei hts 

where (Y = Wj, W2, S. The bars above He(Gn) denote the constraint that 

The numbers fis(G,),  &,(G,) and &>(Gn), in tum, can be expressed in terms of the 
U:!, and G,-1 in the matrix form 

technique based on the fractal structure of the lattice. 

i at A1 and j at A,+] is expressed via &(G& Ne(U,?), N,(U:$), Ne(Un+z), Na(Un+z) ?b, 

and 
the height at A1 is fixed at i .  

numbers of allowed configurations on the branches 

where 

(5.2) 
1+3X+X2 1+4X+3XZ 1+4X+3X2 

2 + 7X + 4X2 
1+4X+3X2 1+4X+3X2 

2 f 6X 
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In the~thermodynamic limit for the sites deep inside the lattice we have X = 9. 
Hence, one can get 

and the product runs over all subbranches of the subtree G.. 

number of allowed configurations of the full lattice in the SOC state 
To obtain the two-point correlation function, we ought to divide N ( i ,  j )  by the total 

where Nlod is given by 

with 

(5.7) 

Then, substituting fis(G,) from (5.3) one can find for n > 1 

where 

A] = o  (5.9) 

(5.10) 

are eigenvalues of the matrix A and the product runs over all subbranches which surround 
the path from A I  to An+i. 

Thus, after a rather tedious calculation we obtain an exact expression for Pn(i, j )  in the 
SOC state 

Pn(i, j )  = P ( i ) P ( j )  + pij (;)'"-I) - . > 1 (5.11) 

where p i j  are numerical constants 

pi1 = 8140 + 3640J5 - (1282 & + 2870)(A3 - Az) 

piz = pzi =50660+22656&- (2762&+6174)(A, - A d  
pi3 = psi = 122760+54900&- (3234A+7230)(Ap - Az) 
pi4= p4i = 171560+76724&-(30262/5f6766)(A3-A~) 

pzz = 175612+785364- (y + 
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pu = p32 = 333 040 + 148 940 & - (9290 & + 20 774) (A3 - A2) 

px = p42 = 425488 + 190284&- (F +22326 (A, - AI) ) 
p33 =521612+233272&- ( - 7y + 
P34 = p43 = 605 724 + 270 888 v% - (y -+ 40 998 

p~ = 662 860 + 296440 f i  - 

For two nearest-neighbour sites A1 and A2 separated by the distance n = 1 in the soc state 
the constants pij have other values because the matrix A is degenerate. Hence we get 

175 - 7 8 d  
16 

87 - 3 1 d  
= Pi(4.4) = 128 

P,(l, 1) = 0 Pl (2,2) = 

1 1 9 - 4 7 d  
128 pi (3.3) = 

169&- 369 
- P,(2,3) = Pl(3.2) = 

32 128 
5 ( 1 3 d  - 29) 

Pl(1,2) = PI(2,l) = 

171&-371 
128 

- PI (2,4) = PI (4.2) = 
265 - 1 1 7 8  

128 
235 - 

128 

Pl(1,3) = P, (3 ,  1) = 

81 - 2945 
128 . PI (3,4) = P, (4,3) = p1(1,4) = pi(4, 1) = 

6. Conclusion 

In this paper, we have investigated the Abelian sandpile model on the Husimi lattice of 
square plaquettes. The distribution of height probabilities and the two-point correlation 
function in the soc state have been calculated exactly. We have shown that correlations 
decay with distance as (&/A2)+-'). 

At the end we want to compare the distribution of height probabilities' obtained on 
different lattices with the same coordination number q = 4. 

Table 1. 

Square I61 Bethe I31 Husimi of trianeles cl41 Husimi of squnres 

P ( l )  0.07363 0.07407 0.07031 0.073 77 
P(2) 0.1739 0.22222 0.16406 0.205 74 
P(3) 0.3063 0.33333 0.33594 0.33074 
P14) 0.446 I 0.37037 0.42969 0.38975 

From this table we see that the Husimi lattice is a good approximation for the regular 
lattices and the best one is achieved for P ( l )  as it can be considered as a local structural 
characteristic of the model [6]. The next step of our investigations will be the calculation 
of dynamic characteristics of ASM, e.g. critical exponents of avalanches. The choice of the 
Husimi lattice gives us hope to find the relationship between the chaos and soc state since 
some spin models formulated on this lattice show the chaotic behaviour [IO, 131. 
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